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We have calculated the total ground-state energy, kinetic energy, and potential
energy of He, H2, Li, and Be using explicitly correlated wavefunctions and two
numerical integration procedures. The first integration procedure uses pseudorandom
numbers and converges asN−0.5. The second uses a set of quasirandom numbers
generated by Halton’s algorithm. Under some circumstances the convergence of
this integration procedure can be as fast asN−1. When a small to intermediate
number of quasirandom numbers are used, most of our expectation values converge
faster than those computed using pseudorandom numbers. When a large number
of quasirandom numbers are used, however, we find that most of the expectation
values converge at roughly the same rate as those computed using pseudorandom
numbers. c© 2001 Academic Press

INTRODUCTION

A number of studies have shown that the convergence of atomic and molecular calcu-
lations can be tremendously accelerated by using basis functions which satisfy the two-
electron cusp condition and which have the correct asymptotic behavior (see, for example
Ref. [1]). The integrals of such functions, however, can rarely be integrated analytically.
Traditional numerical integration techniques (e.g., Gauss–Laguerre and Gauss–Legendre)
can be used to evaluate the matrix elements of systems with just a few electrons [2]. For
systems with many electrons, and thus many dimensions, Monte Carlo methods can perform
the necessary numerical integrations much more efficiently.

In a variational Monte Carlo calculation, a trial wavefunction form is chosen and the
adjustable parameters in this form are optimized so as to minimize the variance in the local
energy [2, 3]. Since such optimizations normally require several iterations, this step is done
with just enough Monte Carlo integration points to adequately sample the parameter space
(typically a few thousand) but not too many to be computationally impractical. Once the
trial wavefunction has been optimized, it is then used to evaluate one or more expectation
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values. This step is done with as many Monte Carlo integration points as possible (typically
a few million) so as to minimize the statistical error.

The “random” numbers used in most Monte Carlo calculations are statistically uncor-
related values generated from some deterministic algorithm (e.g., a linear congruential
generator) [4]. As such, they are more properly labeled pseudorandom numbers. When
these numbers are used in any numerical integration they produce a statistical error that is
proportional toc N−0.5. Herec is a constant that depends on the expectation value being
evaluated andN is the number of Monte Carlo integration points used to evaluate it. In a
variational Monte Carlo calculation the first step serves to makec as small as possible and
the second step serves to makeN−0.5 as small as possible.

In many applications the convergence of a numerical integration can be significantly im-
proved by using quasirandom numbers instead of pseudorandom numbers (see, for example,
Ref. [5]). Both pseudorandom and quasirandom points are uniformly distributed in some
n-dimensional space—typically the unit hypercube. Whereas the former are as uncorrelated
as possible, the latter are quite correlated and are chosen in such a way that new numbers
uniformly fill the gaps between the old ones. Because quasirandom methods can converge
as fast asN−1 under some circumstances, we wish to determine whether they can be used
to replace pseudorandom numbers in either step of a variational Monte Carlo calculation
and, if so, to discover what their convergence will be.

In this paper we calculate the total ground-state energy, kinetic energy, and potential en-
ergy of He, H2, Li, and Be using pseudorandom numbers and a type of quasirandom numbers
proposed by Halton [6]. For our trial wavefunctions we use explicitly correlated Slater and
Gaussian geminals. Although these forms converge relatively slowly for both atoms and
molecules, they can be analytically integrated and this allows us to compare our numerical
results to the exact analytic result and thus to conclusively compare these two integration
methods. Unless otherwise indicated, all values in this paper are given in atomic units.

PSEUDORANDOM CONFIGURATIONS

For atoms with only a few electrons we have found that an effective set of numerical
integration points can be generated using the “biased as random” method [2]. This algorithm
determines the coordinates of thei th electron,xi = (ri , θi , φi ), such that

R=
ri∫

0

g(s) ds, 2 = θi , and 8 = φi , (1)

whereR,2, and8 are pseudorandom numbers chosen from the range

R=
(

0,

∞∫
0

g(s) ds

)
, 2 = (0, 2π) and 8 = (−π, π), (2)

and whereg(s) is a guiding function which depends on the electron–nuclear distance. The
weight of this point is the relative probability of choosing these coordinates and is given by

w(xi ) = g(ri )

/(
4πr 2

i

∞∫
0

g(s) ds

)
. (3)

The factor 4πr 2
i compensates for choosing this point in spherical coordinates in Eq. (1).
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As with any importance sampling technique, the use of a guiding function allows us to
concentrate the placement of our points in the important regions of space. For this reason
our convergence is increased tremendously compared to a simple sampling of the unit
hypercube. In this paper our guiding function is taken to be

g(r ) = e−αr , (4)

whereα is a parameter which can be adjusted so as to minimize the variance. This form
was chosen because it provides a good approximation of92 in the asymptotic region [3].

For molecular systems we compute the pointxi = (r̂ i , θi , φi ) in much the same way as
we do for atoms. One important difference is that we now place each electron with respect to
one of the atoms in the molecule, i.e.,r̂ i = ri + R j . Hereri is the electron–nuclear distance
computed from Eq. 1 andR j is the position of a randomly chosen atom. The weight of this
configuration is found by averaging the electron–nuclear distance over all the atoms:

w(xi ) = 1

# Atoms

# Atoms∑
k=1

g(|r i − Rk|)
/(

4π | r i − Rk | 2
∞∫

0

g(s) ds

)
. (5)

This averaging causes the weight to become infinite when an electron approaches any of the
atoms. It is this feature that keeps the singularities in the electron–nuclear potential from
dominating the variance [1, 3].

QUASIRANDOM CONFIGURATIONS

Altering the biased as random method to use quasirandom numbers instead of pseu-
dorandom numbers is straightforward. We simply replace the pseudorandom numbersR,
2, and8 in Eq. (1) with three quasirandom numbers. No other changes are required. We
generate our quasirandom numbers using the Halton program developed by Berblinger and
Schlier [7]. In this program the quasirandom numbershi are produced by the recursive
relation hi+1= (p+ 1)y− (1− hi ), where p is the prime number used to generate this
sequence andy is a function ofp. In our program the quasirandom sequences used to sam-
ple each variable (r1, θ1, φ1, r2, . . .) are based on the primes chosen in ascending order
(2, 3, 5, 7, . . .).

For molecular systems the deterministic nature of the quasirandom numbers means that
we can no longer place each electron around a randomly chosen atom. Instead we pick the
first half of our points such that electron 1 is on atomA and electron 2 is on atomB. For the
second half of our points we place both electrons on atomA. Because of the symmetrization
operator, this choice adequately covers the parameter space for H2.

CALCULATIONS

The numerical evaluation of an expectation value can be written as

〈A〉 =
∑

i

(9i A9i /w(xi ))

/∑
i

(
92

i

/
w(xi )

)
, (6)

whereA is the operator to be determined and9i = 9T (xi ) is the value of the trial wave-
function at the pointxi . When pseudorandom numbers are used to compute this quantity
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we can define the statistical error in Eq. (6) as

σ 2 =
∑

i

(
(A9i − 〈A〉9i )

292
i

/
w(xi )

2
)/∑

i

(
92

i

/
w(xi )

)2
. (7)

When quasirandom numbers are used, however, the statistical error has no well-defined
meaning and so is not computed.

For the helium atom we used a Slater-type geminal for our trial wavefunction,

9T = (1+ P12)
∑

k

ck exp(−αkr1− βkr2− γkr12), (8)

whereP12 is the operator which interchanges the coordinates of the two electrons. For this
system we optimized all of the parameters in two basis sets so as to minimize the total
energy. The first consists of a single Slater geminal and the second consists of a set of eight
Slater geminals. For the molecule H2 (at an internuclear distance of 1.4 a.u.) we used a
single Gaussian-type geminal for our trial wavefunction,

9T = (1+ P12) exp
(−αr 2

1A − βr 2
2B − γ r 2

12

)
, (9)

where

r 2
1A = x2

1 + y2
1 + (z1− δ)2,

r 2
2B = x2

2 + y2
2 + (z2− ε)2.

Since the position of each Gaussian can be optimized along thez axis, a small number
of basis functions can capture a large percentage of the total energy. For the lithium and
beryllium atoms we used a single Gaussian-type geminal for our trial wavefunctions,

9T = A

[
exp

(
−
∑

i

αi r
2
i +

∑
i< j

βi j r 2
i j

)]
, (10)

where A is an antisymmetrization operator which interchanges the appropriate electron
coordinates. As before, the parametersαi andβi j are optimized so as to minimize the total
energy of each system. The values of the adjustable parameters used in each of these wave-
functions are listed in Table I. Because each of these forms can be analytically integrated,
we can compare our numerical results to the exact analytic result. These analytic values are
given in Table II.

For the helium atom we computed the total ground-state energy, the kinetic energy, and
the potential energy using both a low accuracy wavefunction and a moderately accurate
one. As Tables III and IV show, the convergence of the total energy and the potential energy
are significantly improved when a small to intermediate number of quasirandom points is
used (up to about 100,000). When a larger number of points are used we found that the
convergence of both types of points becomes roughly the same. In contrast, quasirandom
points produce a better convergence for the kinetic energy even when a large number of
points are used. This is true for both basis sets. For the H2 molecule we see in Table V that,
once again the total energy and the potential energy converge much faster when quasirandom
numbers are used. This is true over the entire range of points considered. In the kinetic
energy the error drops quickly when a small to intermediate number of quasirandom points
are used. For a large number of points, however, the convergence is roughly the same using
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TABLE II

The Analytic Values of the Total Energy, Kinetic En-

ergy, and Potential Energy (in a.u.) Produced by the Trial

Wavefunctions of Each System Considered Here

System 〈H〉 2〈KE〉 〈PE〉

Helium (1 geminal) −2.899534 5.799068 −5.799090
Helium (8 geminals) −2.903716 5.807433 −5.809411
H2 −1.038862 1.984539 −2.031132
Lithium −6.760903 13.521806 −13.521806
Beryllium −14.799508 29.599018 −29.599017

TABLE III

The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of Helium

Using a Single Slater Geminal and the Guiding Functiong(r) = e−0.8r

N 〈H〉 1E 2〈KE〉 1KE 〈PE〉 1PE

Pseudorandom
4000 −2.8969686± 0.00613 2.5e−3 5.7993802± 0.02653 2.6e−4 −5.8029533± 0.1238 3.8e−3

16,000 −2.9001522± 0.00245 6.1e−4 5.7949044± 0.01310 4.2e−3 −5.7624505± 0.0612 3.6e−2
64,000 −2.9000623± 0.00137 5.2e−4 5.7979472± 0.00656 1.1e−3 −5.7835529± 0.0307 1.5e−2

256,000 −2.9004921± 0.00071 9.5e−4 5.8000703± 0.00329 9.5e−4 −5.7916157± 0.0153 7.4e−3
1,024,000 −2.8996931± 0.00038 1.5e−4 5.7991047± 0.00165 6.6e−6 −5.7971412± 0.0076 1.9e−3
4,096,000 −2.8996216± 0.00017 8.7e−5 5.7988927± 0.00082 2.1e−4 −5.7986339± 0.0038 4.5e−4

Quasirandom
4000 −2.9008601 1.3e−3 5.8005677 1.4e−3 −5.8027595 3.6e−3

16,000 −2.8963012 3.2e−3 5.7992245 1.1e−4 −5.7932060 5.8e−3
64,000 −2.8994216 1.1e−4 5.7991489 3.7e−5 −5.7990082 8.1e−5

256,000 −2.8993191 2.1e−4 5.7991324 2.1e−5 −5.7986535 4.3e−4
1,024,000 −2.8994594 7.5e−5 5.7990974 1.3e−5 −5.7989853 1.0e−4
4,096,000 −2.8994745 5.9e−5 5.7991110 3.0e−7 −5.7989810 1.0e−4

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.

TABLE IV

The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of Helium

Using 8 Slater Geminals and the Guiding Functiong(r) = e−0.8r

N 〈H〉 1E 2〈KE〉 1KE 〈PE〉 1PE

Pseudorandom
4000 −2.9038559± 0.0000645 1.3e−4 5.8126059± 0.1075 1.2e−3 −5.8097089± 0.1242 2.9e−4

16,000 −2.9037747± 0.0000311 5.7e−5 5.8096016± 0.0531 1.7e−3 −5.7717103± 0.0615 3.7e−2
64,000 −2.9037438± 0.0000156 2.7e−5 5.8105506± 0.0265 8.3e−4 −5.7938968± 0.0308 1.5e−2

256,000 −2.9037214± 0.0000079 4.6e−6 5.8122366± 0.0133 8.4e−4 −5.8018206± 0.0154 7.5e−3
1,024,000 −2.9037221± 0.0000041 5.3e−6 5.8114981± 0.0066 1.0e−4 −5.8075083± 0.0077 1.9e−3
4,096,000 −2.9037177± 0.0000020 9.0e−7 5.8112073± 0.0033 1.8e−4 −5.8089816± 0.0038 4.2e−4

Quasirandom
4000 −2.9036954 2.1e−5 5.8135036 2.1e−3 −5.8128954 3.4e−3

16,000 −2.9037191 2.3e−6 5.8121461 7.5e−4 −5.8044305 4.9e−3
64,000 −2.9037119 4.9e−6 5.8115490 1.6e−4 −5.8093714 3.9e−5

256,000 −2.9037185 1.7e−6 5.8114222 3.3e−5 −5.8090399 3.7e−4
1,024,000 −2.9037185 1.7e−6 5.8113725 1.6e−5 −5.8093314 7.9e−5
4,096,000 −2.9037181 1.3e−6 5.8113882 5.0e−7 −5.8093156 9.5e−5

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.
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TABLE V

The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of H2 Using

a Single Gaussian Geminal and the Guiding Functiong(r) = e−0.6r

N 〈H〉 1E 2〈KE〉 1KE 〈PE〉 1PE

Pseudorandom
4000 −1.0353102± 0.01619 3.5e–3 1.9812651± 0.02326 3.2e–3 −2.0260992± 0.0550 5.0e–3

16,000 −1.0256257± 0.00814 1.3e–2 1.9798107± 0.01169 4.7e–3 −2.0207030± 0.0272 1.0e–2
64,000 −1.0339303± 0.00424 4.9e–3 1.9761876± 0.00586 8.3e–3 −2.0311847± 0.0137 5.2e–5

256,000 −1.0412451± 0.00217 2.3e–3 1.9824086± 0.00293 2.1e–3 −2.0343312± 0.0068 3.1e–3
1,024,000 −1.0380460± 0.00106 8.1e–4 1.9849070± 0.00147 3.6e–4 −2.0298204± 0.0034 1.3e–3
4,096,000 −1.0383317± 0.00053 5.3e–4 1.9844853± 0.00073 5.4e–5 −2.0305376± 0.0017 5.9e–4

Quasirandom
4000 −1.0300890 8.7e–3 1.9904178 5.8e–3 –2.0176825 1.3e–2

16,000 −1.0395744 7.1e–4 1.9846175 7.8e–5 −2.0318663 7.3e–4
64,000 −1.0397140 8.5e–4 1.9851255 5.8e–4 −2.0316088 4.7e–4

256,000 −1.0392290 3.6e–4 1.9847784 2.3e–4 −2.0313272 1.9e–4
1,024,000 −1.0386156 2.4e–4 1.9844087 1.3e–4 –2.0309801 1.5e–4
4,096,000 −1.0388429 1.9e–5 1.9845074 3.2e–5 –2.0311348 2.3e–6

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.

TABLE VI

The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of Lithium

Using a Single Gaussian Geminal and the Guiding Functiong(r) = e−0.6r

N 〈H〉 1E 2〈KE〉 1KE 〈PE〉 1PE

Pseudorandom
4000 −6.9742738± 0.2319 2.1e–1 13.832081± 0.1050 3.1e–1 –13.579923± 0.794 5.8e–2

16,000 −6.8280482± 0.1156 6.7e – 2 13.469668± 0.0534 5.2e – 2 –13.614904± 0.398 9.3e – 2
64,000 −6.7634122± 0.0563 2.5e – 3 13.439153± 0.0264 8.2e – 2 –13.565526± 0.196 4.3e – 2

256,000 −6.7755747± 0.0287 1.4e – 2 13.455804± 0.0132 6.6e–2 –13.569363± 0.098 4.7e–2
1,024,000 −6.7367849± 0.0146 2.4e–2 13.525391± 0.0066 3.5e–3 –13.495779± 0.049 2.6e–2
4,096,000 −6.7581585± 0.0072 2.7e–3 13.524475± 0.0033 2.6e–3 –13.517611± 0.024 4.1e–3

Quasirandom
4000 −6.8217285 6.0e–2 13.464788 5.7e–2 −13.611025 8.9e–2

16,000 −6.7434073 1.7e–2 13.477887 4.3e–2 −13.526154 4.3e–3
64,000 −6.7790491 1.8e–2 13.518475 3.3e–3 −13.541502 1.9e–2

256,000 −6.7609826 7.9e–5 13.517605 4.2e–3 −13.523870 2.0e–3
1,024,000 −6.7640591 3.1e–3 13.519925 1.8e–3 −13.525786 3.9e–3
4,096,000 −6.7612530 3.4e–4 13.521617 1.8e–4 −13.522135 3.2e–4

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.

TABLE VII

The Total Energy, Kinetic Energy and Potential Energy (in a.u.) of Beryllium

Using a Single Gaussian Geminal and the Guiding Functiong(r) = e−0.7r

N 〈H〉 1E 2〈K E〉 1K E 〈P E〉 1P E

Pseudorandom
4000 −13.262923± 0.353 3.4e–2 25.994015± 0.350 4.6 –1 −26.688828± 1.557 2.3e–1

16,000 −13.054152± 0.187 1.7e–1 25.824068± 0.170 6.3e–1 −26.599055± 0.765 1.4e–1
64,000 −13.126207± 0.093 1.0e–1 26.390848± 0.085 6.6e–2 −26.354957± 0.384 1.0e–1

256,000 −13.160167± 0.047 6.8e–2 26.374199± 0.042 8.2e–2 −26.429454± 0.192 2.7e–2
1024000 −13.203534± 0.024 2.5e–2 26.423505± 0.021 3.3e–2 −26.448025± 0.097 9.1e–3

4,096,000 −13.228044± 0.012 5.2e–4 26.434565± 0.010 2.2e–2 −26.469177± 0.048 1.2e–2

Quasirandom
4000 −13.019213 2.0e–1 26.523701 6.6e–2 −26.200488 2.5e–1

16,000 −12.955537 2.7e–1 26.416804 4.0e–2 −26.184675 2.7e–1
64,000 −13.056496 1.7e–1 26.402834 5.4e–2 −26.287416 1.6e–1

256,000 −13.176898 5.1e–2 26.414650 4.2e–2 −26.425275 3.1e–2
1,024,000 −13.218655 9.9e–3 26.460597 3.4e–3 −26.442934 1.4e–2
4,096,000 −13.226048 2.5e–3 26.455717 1.4e–3 −26.455973 1.1e–3

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.
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both quasirandom and pseudorandom numbers. In Table VI we list the results obtained
for the lithium atom. We find that the convergence of the total energy, kinetic energy,
and potential energy are very similar to those in helium, i.e., a small to intermediate
number of quasirandom points produces a noticeable improvement. For the beryllium
atom both the quasirandom and the pseudorandom numbers give a similar rate of con-
vergence for the total energy and the potential energy. As Table VII shows this is true
over the entire range of points considered. When we examine the kinetic energy we find
that both types of points again produce a similar rate of convergence except when a large
number of points is used. In this situation the quasirandom points converge noticeably
faster.

CONCLUSIONS

All quasirandom sequences are defined by their discrepancy—the average distance be-
tween the points. To achieve anN−1 convergence using quasirandom numbers, the integrand
must be relatively smooth and slowly changing (compared to the size of the discrepancy).
If the integrand is not continuous or is quickly changing, then the error in a quasirandom
integration drops toN−0.5. Wilson and Coldwell [8] were able to show that the error in
the kinetic energy and potential energy at the Monte Carlo points could be “paired” so that
the fluctuations tend to cancel. Using this method they were able to obtain convergence
of N−0.72 for systems similar to those here. Because of the complexity of this method, it
was never widely used. In this paper we have shown that expectation values can be easily
computed using quasirandom numbers.

Our calculations show that the convergence of most expectation values is significantly
faster when a small to intermediate number of quasirandom numbers are used. For this
reason we believe that quasirandom numbers would be very effective in the first step in a
variational Monte Carlo calculation. Here a single small set of configurations (N ∼ 4000)
is used to minimize the statistical error, Eq. (7) withA = H , with respect to the parameters
in the trial wavefunction. In addition, the exact meaning of the minimization functional is
not important in this step and so no confusion would exist as to what was being calculated.
Because of their superior convergence, quasirandom numbers would enable us to use fewer
integration points and thus substantially reduce the amount of computer time required by
these calculations.

For most of the expectation values examined here we found that both pseudorandom and
quasirandom numbers converge at approximately the same rate when a large number of
integration points are used. This result has been seen before (see, for example, Ref. [9]).
For this reason we believe that quasirandom numbers should not be used in the last step in
a variational Monte Carlo calculation. Not only is there no savings in computer time but
when pseudorandom numbers are used the variance has a well-tested meaning in terms of an
expectation value. This definition is important when making the final comparison between
the computed result and the established answer.

In other studies quasirandom numbers have also been shown to converge slowly in
integrals with a large number of dimensions. We do not see any clear evidence of that here.
Our largest system, beryllium(N = 12), does converge somewhat more slowly than our
smallest system, helium(N = 6), but the wavefunction is also significantly poorer. A closer
examination of this question is currently being investigated.
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