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We have calculated the total ground-state energy, kinetic energy, and potential
energy of He, H, Li, and Be using explicitly correlated wavefunctions and two
numerical integration procedures. The firstintegration procedure uses pseudorandom
numbers and converges A5, The second uses a set of quasirandom numbers
generated by Halton’s algorithm. Under some circumstances the convergence of
this integration procedure can be as fastNist. When a small to intermediate
number of quasirandom numbers are used, most of our expectation values converge
faster than those computed using pseudorandom numbers. When a large number
of quasirandom numbers are used, however, we find that most of the expectation
values converge at roughly the same rate as those computed using pseudorandom
numbers. (© 2001 Academic Press

INTRODUCTION

A number of studies have shown that the convergence of atomic and molecular ca
lations can be tremendously accelerated by using basis functions which satisfy the t
electron cusp condition and which have the correct asymptotic behavior (see, for exan
Ref. [1]). The integrals of such functions, however, can rarely be integrated analytica
Traditional numerical integration techniques (e.g., Gauss—Laguerre and Gauss—Leget
can be used to evaluate the matrix elements of systems with just a few electrons [2].
systems with many electrons, and thus many dimensions, Monte Carlo methods can per
the necessary numerical integrations much more efficiently.

In a variational Monte Carlo calculation, a trial wavefunction form is chosen and tt
adjustable parameters in this form are optimized so as to minimize the variance in the Ic
energy [2, 3]. Since such optimizations normally require several iterations, this step is d
with just enough Monte Carlo integration points to adequately sample the parameter sy
(typically a few thousand) but not too many to be computationally impractical. Once t
trial wavefunction has been optimized, it is then used to evaluate one or more expecta
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values. This step is done with as many Monte Carlo integration points as possible (typic
a few million) so as to minimize the statistical error.

The “random” numbers used in most Monte Carlo calculations are statistically unc
related values generated from some deterministic algorithm (e.g., a linear congruel
generator) [4]. As such, they are more properly labeled pseudorandom numbers. W
these numbers are used in any numerical integration they produce a statistical error tr
proportional toc N=%5. Herec is a constant that depends on the expectation value beil
evaluated andN is the number of Monte Carlo integration points used to evaluate it. In
variational Monte Carlo calculation the first step serves to nta®small as possible and
the second step serves to make®® as small as possible.

In many applications the convergence of a numerical integration can be significantly
proved by using quasirandom numbers instead of pseudorandom numbers (see, for exa
Ref. [5]). Both pseudorandom and quasirandom points are uniformly distributed in so
n-dimensional space—typically the unit hypercube. Whereas the former are as uncorrel
as possible, the latter are quite correlated and are chosen in such a way that new nur
uniformly fill the gaps between the old ones. Because quasirandom methods can conv
as fast as\ ~* under some circumstances, we wish to determine whether they can be u
to replace pseudorandom numbers in either step of a variational Monte Carlo calcula
and, if so, to discover what their convergence will be.

In this paper we calculate the total ground-state energy, kinetic energy, and potential
ergy of He, H, Li, and Be using pseudorandom numbers and a type of quasirandom numt
proposed by Halton [6]. For our trial wavefunctions we use explicitly correlated Slater a
Gaussian geminals. Although these forms converge relatively slowly for both atoms :
molecules, they can be analytically integrated and this allows us to compare our numel
results to the exact analytic result and thus to conclusively compare these two integra
methods. Unless otherwise indicated, all values in this paper are given in atomic units.

PSEUDORANDOM CONFIGURATIONS

For atoms with only a few electrons we have found that an effective set of numeri
integration points can be generated using the “biased as random” method [2]. This algori
determines the coordinates of tite electronx; = (ri, 6;, ¢i), such that

fi
Rz/g(s)da ® =06, and ® = ¢, Q)
0
whereR, ®, and® are pseudorandom numbers chosen from the range
R= (O, /g(s)ds), ®=(0,27r) and & = (-m,m), (2)
0

and whereg(s) is a guiding function which depends on the electron—nuclear distance. T
weight of this point is the relative probability of choosing these coordinates and is given

w(x) = g(ri)/ <4nri2/g(s)ds>. )
0

The factor 42 compensates for choosing this point in spherical coordinates in Eq. (1).
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As with any importance sampling technique, the use of a guiding function allows us
concentrate the placement of our points in the important regions of space. For this ree
our convergence is increased tremendously compared to a simple sampling of the
hypercube. In this paper our guiding function is taken to be

g(r) =e, (4)

whereq is a parameter which can be adjusted so as to minimize the variance. This fc
was chosen because it provides a good approximatidr?af the asymptotic region [3].
For molecular systems we compute the paint (fi, 6, ¢) in much the same way as
we do for atoms. One important difference is that we now place each electron with respe
one of the atoms in the molecule, i&.= r; + R;. Herer; is the electron—-nuclear distance
computed from Eqg. 1 ang; is the position of a randomly chosen atom. The weight of thi
configuration is found by averaging the electron—nuclear distance over all the atoms:

1 # Atoms o0
W) = o 2 adri Rk|>/<4n|r. R /g(s)ds) (5)
- 0

This averaging causes the weight to become infinite when an electron approaches any c
atoms. It is this feature that keeps the singularities in the electron—nuclear potential fr
dominating the variance [1, 3].

QUASIRANDOM CONFIGURATIONS

Altering the biased as random method to use quasirandom numbers instead of p
dorandom numbers is straightforward. We simply replace the pseudorandom nuRnber
®, and® in Eq. (1) with three quasirandom numbers. No other changes are required.
generate our quasirandom numbers using the Halton program developed by Berblinger
Schlier [7]. In this program the quasirandom numblersare produced by the recursive
relationh;;1 =(p+1)y — (1 —h;), wherep is the prime number used to generate this
sequence angis a function ofp. In our program the quasirandom sequences used to sal
ple each variabler{, 6;, ¢1, r», ...) are based on the primes chosen in ascending ordk
(2,35 /7,...).

For molecular systems the deterministic nature of the quasirandom numbers means
we can no longer place each electron around a randomly chosen atom. Instead we pic
first half of our points such that electron 1 is on atérand electron 2 is on ato. For the
second half of our points we place both electrons on atoBecause of the symmetrization
operator, this choice adequately covers the parameter space.for H

CALCULATIONS

The numerical evaluation of an expectation value can be written as

(A) :Z (W AW; Jw (%)) / Z (W2 /w(x)), (6)

whereA is the operator to be determined afrd= W+ (X;) is the value of the trial wave-
function at the poink;. When pseudorandom numbers are used to compute this quant
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we can define the statistical error in Eq. (6) as

ot =D (A~ <A>‘yi)2‘pi2/w(xi)2)/z (W2 /wix))?. @)

i
When quasirandom numbers are used, however, the statistical error has no well-def

meaning and so is hot computed.
For the helium atom we used a Slater-type geminal for our trial wavefunction,

Yt =1+ P Z Ck eXp(—ars — Pl2 — Wl12), (8)
K

whereP;; is the operator which interchanges the coordinates of the two electrons. For
system we optimized all of the parameters in two basis sets so as to minimize the t
energy. The first consists of a single Slater geminal and the second consists of a set of
Slater geminals. For the molecule lat an internuclear distance of 1.4 a.u.) we used
single Gaussian-type geminal for our trial wavefunction,

Wt = (1+ P1p) exp(—arle —Brig — V"122>’ %
where
ria=X{ + i+ @~ 9>
rhe =Xz +Y; + (22— ©)°.
Since the position of each Gaussian can be optimized along &xés, a small number

of basis functions can capture a large percentage of the total energy. For the lithium
beryllium atoms we used a single Gaussian-type geminal for our trial wavefunctions,

exr(—Zairiz—i-Zﬂij rﬁﬂ (10)

i<j

Ur=A

where A is an antisymmetrization operator which interchanges the appropriate elect
coordinates. As before, the parametgrandg;; are optimized so as to minimize the total
energy of each system. The values of the adjustable parameters used in each of these
functions are listed in Table I. Because each of these forms can be analytically integra
we can compare our numerical results to the exact analytic result. These analytic value:
given in Table II.

For the helium atom we computed the total ground-state energy, the kinetic energy,
the potential energy using both a low accuracy wavefunction and a moderately accu
one. As Tables Il and IV show, the convergence of the total energy and the potential ene
are significantly improved when a small to intermediate number of quasirandom point
used (up to about 100,000). When a larger number of points are used we found tha
convergence of both types of points becomes roughly the same. In contrast, quasirar
points produce a better convergence for the kinetic energy even when a large numbe
points are used. This is true for both basis sets. For thmblecule we see in Table V that,
once again the total energy and the potential energy converge much faster when quasiral
numbers are used. This is true over the entire range of points considered. In the kin
energy the error drops quickly when a small to intermediate number of quasirandom po
are used. For a large number of points, however, the convergence is roughly the same (



ALEXANDER AND COLDWELL

912

00¥7200— €TS000— G2c000— Y1€000— 0€2000— cevvT0— 8ETYT 0 6GEET0 €00vT'C L/SG9°L
veg veg eeg vig ety %] Yo €0 0 0
[euiwab ueissnes T :ag
¢S00T0— ¢S00T0— ¢S00T0— SYEOL'T SYEOL'T SYEOL'T
ezg ety [2%] 0 0 0
[euiwal ueissnes T 1
Tr620000°0 9170000000— €.¢6,0¥00— 060E€¥CTC0 6GCELTTO0
3 [4 A d 0

€Y65899T/290°0
¥€8.85.615°0
€T.0v.68v¥0°0

VECESYB69'T
€976¢.6.9°C

06C¢€TS969'T
8V61YY1IcT ¢

reuiwalb ueissnes T :2H

6905S1¢8'¢y
980€08T8°L6

L6G/80€EB'T GGT0S99.S'T 0T9CET9L IV —
/G/2T€6285°0 YECSYeriv'e SSSE6022°¢ /G8ES6T8TY—
18¢8¢8.7.S°0 8€CIVE99EC 70T8€908¢¢C CEBET'9L69T
0¥0S199T.S0 6995685¢€ ¢ ¢18Y16SCEC S0V06T68CT—
gecrieere’e €997G29TT'E CEVTCLOTT'E 150€0¥'9¢.L€
19/.2.0¢ve’¢ 8YVEVTGET € 6065176.60°C €€8GT1S9¢c.LE—
m_MC_Eom 19]1e|S g ‘wnljaH
¢v92¢€L02'0— 69€9S011'T 96G8G90¢°¢ 0T
_GC_EQU la)e|s T ‘wnljsH
EYA i o )

uonaunjanep) yae3 auljad 01 pasn Sialsweled

| 319Vl



CALCULATIONS USING QUASIRANDOM NUMBERS 913
TABLE Il
The Analytic Values of the Total Energy, Kinetic En-
ergy, and Potential Energy (in a.u.) Produced by the Trial
Wavefunctions of Each System Considered Here
System (H) 2(KE) (PE)
Helium (1 geminal) —2.899534 5.799068 —5.799090
Helium (8 geminals) —2.903716 5.807433 -5.809411
H, —1.038862 1.984539 -2.031132
Lithium —6.760903 13.521806 —13.521806
Beryllium —14.799508 29.599018 —29.599017
TABLE 11l
The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of Helium
Using a Single Slater Geminal and the Guiding Functiorgy(r) = e~ %%
N (H) AE 2(KE) AKE (PE) APE
Pseudorandom
4000 —2.8969686+ 0.00613 25e-3 57993802+ 0.02653 26e-4 —5.8029533+0.1238 38e-3
16,000 —2.9001522+ 0.00245 6le-4 57949044+ 0.01310 42e-3 —5.7624505+ 0.0612 36e—2
64,000 —2.9000623+ 0.00137 52e-4 57979472+ 0.00656 1le-3 —5.7835529+0.0307 15e-2
256,000 —2.9004921+ 0.00071 95e-4 58000703+ 0.00329 95e-4 —57916157+0.0153 74e-3
1,024,000 —2.8996931+ 0.00038 15e—4 57991047+ 0.00165 66e-6 —57971412+0.0076 19e-3
4,096,000 —2.8996216+ 0.00017 87e-5 57988927+ 0.00082 2le-4 —5.7986339+ 0.0038 45e—4
Quasirandom
4000 —2.9008601 Be-3 5.8005677 Ye-3 —5.8027595 Fe-3
16,000 —2.8963012 De-3 5.7992245 Ne-4 —5.7932060 Be-3
64,000 —2.8994216 lle-4 5.7991489 Fe-5 —5.7990082 8le-5
256,000 —2.8993191 2le-4 5.7991324 2e-5 —5.7986535 LBe-4
1,024,000 —2.8994594 Be-5 5.7990974 Be-5 —5.7989853 0e-4
4,096,000 —2.8994745 Pe-5 57991110 De-7 —5.7989810 10e-4

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.

TABLE IV

The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of Helium
Using 8 Slater Geminals and the Guiding Functiorg(r) = =08

N

(H) AE 2(KE) AKE (PE) APE

Pseudorandom
4000 —2.9038559+ 0.0000645 13e—4 58126059+ 0.1075 12e—3 —5.809708%+ 0.1242 29e-4
16,000 —2.9037747+ 0.0000311 57e-5 58096016+ 0.0531 17e—3 —5.7717103+0.0615 37e-2
64,000 —2.9037438+ 0.0000156 27e-5 5.8105506+ 0.0265 83e—4 —5.7938968+ 0.0308 15e-2
256,000 —2.9037214+ 0.0000079 46e—6 58122366+ 0.0133 84e—4 —5.8018206+ 0.0154 75e-3
1,024,000 —2.9037221+ 0.0000041 S3e-6 58114981+ 0.0066 10e—4 —5.8075083+0.0077 19e-3
4,096,000 —2.9037177+ 0.0000020 Pe-7 58112073+0.0033 18e—4 —5.8089816+ 0.0038 42e—4

Quasirandom

4000 —2.9036954 2le-5 5.8135036 2e-3 —5.8128954 HAe-3
16,000 —2.9037191 Be-6 5.8121461 be-4 —5.8044305 e-3
64,000 —2.9037119 0e-6 5.8115490 be-4 —5.8093714 PVe-5
256,000 —2.9037185 17e-6 5.8114222 Be-5 —5.8090399 3re—4
1,024,000 —2.9037185 17e-6 5.8113725 be-5 —5.8093314 Me-5
4,096,000 —2.9037181 13e-6 5.8113882 De-7 —5.8093156 %He-5

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.



914

TABLE V
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The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of H Using
a Single Gaussian Geminal and the Guiding Functior(r) = e~ %8

N (H) AE 2(KE) AKE (PE) APE
Pseudorandom
4000 —1.0353102+0.01619 3.5e-3 1.98126510.02326 3.2e—-3 —2.0260992+ 0.0550 5.0e-3
16,000 —1.0256257+ 0.00814 1.3e—2 1.97981@70.01169 4.7e-3 —2.0207030+ 0.0272 1.0e-2
64,000 —1.0339303+ 0.00424 4.9e-3 1.97618260.00586 8.3e—3 —2.0311847+0.0137 5.2e-5
256,000 —1.04124514+0.00217 2.3e—-3  1.98240860.00293 2.1e-3 —2.0343312+0.0068 3.1e-3
1,024,000 —1.0380460+ 0.00106 8.1e—4  1.98490700.00147 3.6e—4 —2.0298204+ 0.0034 1.3e-3
4,096,000 —1.0383317+ 0.00053 5.3e—4  1.98448530.00073 5.4e-5 —2.0305376+0.0017 5.9e—-4
Quasirandom
4000 —1.0300890 8.7e-3 1.9904178 5.8e-3 -2.0176825 1.3e-2
16,000 —1.0395744 7.1e-4 1.9846175 7.8e-5 —2.0318663 7.3e-4
64,000 —1.0397140 8.5e—4 1.9851255 5.8e-4  —2.0316088 4.7e-4
256,000 —1.0392290 3.6e—-4 1.9847784 2.3e-4 —2.0313272 1.9e-4
1,024,000 —1.0386156 2.4e-4 1.9844087 1.3e-4 —2.0309801 1.5e-4
4,096,000 —1.0388429 1.9e-5 1.9845074 3.2e-5 —2.0311348 2.3e-6

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.

TABLE VI

The Total Energy, Kinetic Energy, and Potential Energy (in a.u.) of Lithium
Using a Single Gaussian Geminal and the Guiding Functiog(r) = e %

N

(H) AE 2(KE) AKE (PE) APE
Pseudorandom
4000 —6.9742738+ 0.2319 2.1le-1 1832081+ 0.1050 3.le-1  -1879923+ 0.794 5.8e-2
16,000 —6.8280482+ 0.1156 6.7e-2 1369668+ 0.0534 5.2e-2 —1814904+ 0.398 9.3e-2
64,000 —6.7634122+-0.0563  2.5e—3  13a39153+0.0264 8.2e—2  -1365526+0.196 4.3e-2
256,000 —6.7755747+0.0287 1.4e-2  1a55804+ 0.0132 6.6e-2  —1869363+ 0.098 4.7e-2
1,024,000 —6.7367849+ 0.0146 2.4e-2 1325391+ 0.0066 3.5e-3 —1395779+ 0.049 2.6e-2
4,096,000 —6.7581585+ 0.0072 2.7e-3 1324475+ 0.0033 2.6e-3  —13817611+ 0.024 4.1e-3
Quasirandom
4000 —6.8217285 6.0e-2 13.464788 5.7e-2 —13611025 8.9e-2
16,000 —6.7434073 1.7e-2 13.477887 4.3e-2 —13526154 4.3e-3
64,000 —6.7790491 1.8e-2 13.518475 3.3e-3 —13541502 1.9e-2
256,000 —6.7609826 7.9e-5 13.517605 4.2e-3 —13523870 2.0e-3
1,024,000 —6.7640591 3.1e-3 13.519925 1.8e-3 —13525786 3.9e-3
4,096,000 —6.7612530 3.4e-4 13.521617 1.8e-4 —13522135 3.2e-4

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.

TABLE VII
The Total Energy, Kinetic Energy and Potential Energy (in a.u.) of Beryllium
Using a Single Gaussian Geminal and the Guiding Functiog(r) = e %"

N

(H) AE 2(KE) AKE (PE) APE
Pseudorandom
4000 —13.262923+ 0.353 3.4e-2 2894015+ 0.350 4.6 -1 —26.688828+ 1.557 2.3e-1
16,000 —13054152+ 0.187 1.7e-1 2824068+ 0.170 6.3e-1 —26.599055+0.765 1.4e-1
64,000 —13.126207+ 0.093 1.0e-1 26390848+ 0.085 6.6e—2 —26.354957+ 0.384 1.0e-1
256,000 —13160167+ 0.047 6.8e—2 2374199+ 0.042 8.2e—2 —26.429454+ 0.192 2.7e-2
1024000 —13203534+ 0.024  2.5e-2 28123505+ 0.021 3.3e-2 —26.448025+0.097 9.1e-3
4,096,000 —13.228044+ 0.012 5.2e-4 28134565+ 0.010 2.2e-2 —26.469177+ 0.048 1.2e-2
Quasirandom
4000 —13019213 2.0e-1 26.523701 6.6e-2 —26.200488 2.5e-1
16,000 —12.955537 2.7e-1 26.416804 4.0e-2 —26.184675 2.7e-1
64,000 —13.056496 1.7e-1 26.402834 5.4e-2 —26.287416 1.6e-1
256,000 —13176898 5.1e-2 26.414650 4.2e-2 —26.425275 3.1e-2
1,024,000 —13218655 9.9e-3 26.460597 3.4e-3 —26.442934 1.4e-2
4,096,000 —13.226048 2.5e-3 26.455717 1.4e-3 —26.455973 1.1e-3

Note. Nis the number of integration points. The difference in each quantity is with respect to the analytic result.
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both quasirandom and pseudorandom numbers. In Table VI we list the results obtal
for the lithium atom. We find that the convergence of the total energy, kinetic enert
and potential energy are very similar to those in helium, i.e., a small to intermedi
number of quasirandom points produces a noticeable improvement. For the berylli
atom both the quasirandom and the pseudorandom numbers give a similar rate of
vergence for the total energy and the potential energy. As Table VIl shows this is t
over the entire range of points considered. When we examine the kinetic energy we
that both types of points again produce a similar rate of convergence except when a |
number of points is used. In this situation the quasirandom points converge noticec
faster.

CONCLUSIONS

All quasirandom sequences are defined by their discrepancy—the average distanc
tween the points. To achieve &IT! convergence using quasirandom numbers, the integral
must be relatively smooth and slowly changing (compared to the size of the discrepan
If the integrand is not continuous or is quickly changing, then the error in a quasirands
integration drops tdN~—%5. Wilson and Coldwell [8] were able to show that the error in
the kinetic energy and potential energy at the Monte Carlo points could be “paired” so t
the fluctuations tend to cancel. Using this method they were able to obtain converge
of N=%72 for systems similar to those here. Because of the complexity of this method
was never widely used. In this paper we have shown that expectation values can be e
computed using quasirandom numbers.

Our calculations show that the convergence of most expectation values is significa
faster when a small to intermediate humber of quasirandom numbers are used. For
reason we believe that quasirandom numbers would be very effective in the first step
variational Monte Carlo calculation. Here a single small set of configuratidns @000)
is used to minimize the statistical error, Eq. (7) with= H, with respect to the parameters
in the trial wavefunction. In addition, the exact meaning of the minimization functional
not important in this step and so no confusion would exist as to what was being calcula
Because of their superior convergence, quasirandom numbers would enable us to use
integration points and thus substantially reduce the amount of computer time requirec
these calculations.

For most of the expectation values examined here we found that both pseudorandorr
guasirandom numbers converge at approximately the same rate when a large numb
integration points are used. This result has been seen before (see, for example, Ref.
For this reason we believe that quasirandom numbers should not be used in the last st
a variational Monte Carlo calculation. Not only is there no savings in computer time t
when pseudorandom numbers are used the variance has a well-tested meaning in terms
expectation value. This definition is important when making the final comparison betwe
the computed result and the established answer.

In other studies quasirandom numbers have also been shown to converge slowl
integrals with a large number of dimensions. We do not see any clear evidence of that b
Our largest system, berylliufN = 12), does converge somewhat more slowly than ou
smallest system, heliudN = 6), but the wavefunction is also significantly poorer. A closet
examination of this question is currently being investigated.
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